- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0003000001000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Sullivan, Nick (4)
-
Valenta, Luke (4)
-
Bernhard, Matthew (1)
-
Bock, Kevin (1)
-
Chatterjee, Rahul (1)
-
Ensafi, Roya (1)
-
Fayed, Marwan (1)
-
Halderman, J Alex (1)
-
Heninger, Nadia (1)
-
Islam, Mazharul (1)
-
Levin, Dave (1)
-
McDonald, Allison (1)
-
Merino, Louis-Henri (1)
-
Pal, Bijeeta (1)
-
Ristenpart, Thomas (1)
-
Sanso, Antonio (1)
-
Sanusi, Marina (1)
-
Scott, Will (1)
-
Sundara_Raman, Ram (1)
-
VanderSloot, Benjamin (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Pal, Bijeeta; Islam, Mazharul; Sanusi, Marina; Sullivan, Nick; Valenta, Luke; Whalen, Tara; Wood, Christopher; Ristenpart, Thomas; Chatterjee, Rahul (, USENIX Security)
-
Valenta, Luke; Sullivan, Nick; Sanso, Antonio; Heninger, Nadia (, IEEE European Symposium on Security and Privacy)We survey elliptic curve implementations from several vantage points. We perform internet-wide scans for TLS on a large number of ports, as well as SSH and IPsec to measure elliptic curve support and implementation behaviors, and collect passive measurements of client curve support for TLS. We also perform active measurements to estimate server vulnerability to known attacks against elliptic curve implementations, including support for weak curves, invalid curve attacks, and curve twist attacks. We estimate that 0.77% of HTTPS hosts, 0.04% of SSH hosts, and 4.04% of IKEv2 hosts that support elliptic curves do not perform curve validity checks as specified in elliptic curve standards. We describe how such vulnerabilities could be used to construct an elliptic curve parameter downgrade attack called CurveSwap for TLS, and observe that there do not appear to be combinations of weak behaviors we examined enabling a feasible CurveSwap attack in the wild. We also analyze source code for elliptic curve implementations, and find that a number of libraries fail to perform point validation for JSON Web Encryption, and find a flaw in the Java and NSS multiplication algorithms.more » « less
-
McDonald, Allison; Bernhard, Matthew; Valenta, Luke; VanderSloot, Benjamin; Scott, Will; Sullivan, Nick; Halderman, J Alex; Ensafi, Roya (, Proceedings of the ACM SIGCOMM Internet Measurement Conference)We report the first wide-scale measurement study of server-side geographic restriction, or geoblocking, a phenomenon in which server operators intentionally deny access to users from particular countries or regions. Many sites practice geoblocking due to legal requirements or other business reasons, but excessive blocking can needlessly deny valuable content and services to entire national populations. To help researchers and policymakers understand this phenomenon, we develop a semi-automated system to detect instances where whole websites were rendered inaccessible due to geoblocking. By focusing on detecting geoblocking capabilities offered by large CDNs and cloud providers, we can reliably distinguish the practice from dynamic anti-abuse mechanisms and network-based censorship. We apply our techniques to test for geoblocking across the Alexa Top 10K sites from thousands of vantage points in 177 countries. We then expand our measurement to a sample of CDN customers in the Alexa Top 1M. We find that geoblocking occurs across a broad set of countries and sites. We observe geoblocking in nearly all countries we study, with Iran, Syria, Sudan, Cuba, and Russia experiencing the highest rates. These countries experience particularly high rates of geoblocking for finance and banking sites, likely as a result of US economic sanctions. We also verify our measurements with data provided by Cloudflare, and find our observations to be accurate.more » « less
An official website of the United States government

Full Text Available